It is all in the noise: Efficient multi-task Gaussian process inference with structured residuals

نویسندگان

  • Barbara Rakitsch
  • Christoph Lippert
  • Karsten M. Borgwardt
  • Oliver Stegle
چکیده

Multi-task prediction methods are widely used to couple regressors or classification models by sharing information across related tasks. We propose a multi-task Gaussian process approach for modeling both the relatedness between regressors and the task correlations in the residuals, in order to more accurately identify true sharing between regressors. The resulting Gaussian model has a covariance term in form of a sum of Kronecker products, for which efficient parameter inference and out of sample prediction are feasible. On both synthetic examples and applications to phenotype prediction in genetics, we find substantial benefits of modeling structured noise compared to established alternatives.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequential Inference for Deep Gaussian Process

A deep Gaussian process (DGP) is a deep network in which each layer is modelled with a Gaussian process (GP). It is a flexible model that can capture highly-nonlinear functions for complex data sets. However, the network structure of DGP often makes inference computationally expensive. In this paper, we propose an efficient sequential inference framework for DGP, where the data is processed seq...

متن کامل

Adaptive Signal Detection in Auto-Regressive Interference with Gaussian Spectrum

A detector for the case of a radar target with known Doppler and unknown complex amplitude in complex Gaussian noise with unknown parameters has been derived. The detector assumes that the noise is an Auto-Regressive (AR) process with Gaussian autocorrelation function which is a suitable model for ground clutter in most scenarios involving airborne radars. The detector estimates the unknown...

متن کامل

An Adaptive Hierarchical Method Based on Wavelet and Adaptive Filtering for MRI Denoising

MRI is one of the most powerful techniques to study the internal structure of the body. MRI image quality is affected by various noises. Noises in MRI are usually thermal and mainly due to the motion of charged particles in the coil. Noise in MRI images also cause a limitation in the study of visual images as well as computer analysis of the images. In this paper, first, it is proved that proba...

متن کامل

Gaussian Process Regression Networks

We introduce a new regression framework, Gaussian process regression networks (GPRN), which combines the structural properties of Bayesian neural networks with the nonparametric flexibility of Gaussian processes. This model accommodates input dependent signal and noise correlations between multiple response variables, input dependent length-scales and amplitudes, and heavy-tailed predictive dis...

متن کامل

Statistical Inference in Autoregressive Models with Non-negative Residuals

Normal residual is one of the usual assumptions of autoregressive models but in practice sometimes we are faced with non-negative residuals case. In this paper we consider some autoregressive models with non-negative residuals as competing models and we have derived the maximum likelihood estimators of parameters based on the modified approach and EM algorithm for the competing models. Also,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013